
On the Security of PKCS#11

Jolyon Clulow
School of Mathematical and Statistical Sciences
University of Natal, Durban, South Africa.
Jolyon.Clulow@cl.cam.ac.uk

Recent Results on APIs and
Standards

§ Specifically focussed on cryptographic hardware
(HSM):
§ Bond, 2001
§ Bond & Anderson, 2001
§ Clayton & Bond, 2002
§ Clulow, 2002
§ Bond & Zielinski, 2002

§ Non HSM focussed:
§ Bleichenbacher, Manger, Klima & Rosa,…

Motivation

§ Analyse the security of PKCS #11 as an interface
for a security device.
§ Provide a comprehensive reference of the known

security issues (pitfalls) for standards and APIs.
§ Evaluation
§ Future developments

§ Evaluate the response of standards bodies and API
designers to published vulnerabilities.
§ Transfer of knowledge of published (academic)

research to industry.

Public Key Cryptography
Standard (PKCS)

§ Developed by RSA Labs in cooperation with
representatives of industry, academia and
government.
§ Many important, existing APIs and protocols have

been built upon PKCS#11 (e.g. SSL). Notable
products include Mozilla and SSL hardware
accelerators from nCipher, IBM, Thales, Rainbow,
AEP/Baltimore, etc.

Design Goals of PKCS#11

§ Provide a standard interface between applications
and (portable) cryptographic devices to allow
interoperability and compatibility between vendor
devices and implementations.
§ Allow resource sharing (a many-to-many

relationship between applications and devices).
§ Not intended to be a general interface to

cryptographic operations or security services but
could be used to build such services, operations or
suitable APIs.

Architecture

§ A “token” is a device that
stores objects (e.g. Keys,
Data and Certificates) and
performs cryptographic
operations.

§ A logical rather than
physical characterization -
one device may have
several, distinct logical
tokens (e.g. like domains)

Stated Security Target
§ Access to private objects on the token, … , requires a PIN.

Thus, possessing the cryptographic device that implements
the token may not be sufficient to use it; the PIN may also
be needed.

§ Does not appear to be the intention to prevent one user
from using another user’s private objects.

§ Additional protection can be given to private keys and
secret keys by marking them as “sensitive” or
“unextractable”.
§ Sensitive keys cannot be revealed in plaintext off the token, and

unextractable keys cannot be revealed off the token even when
encrypted (though they can still be used as keys).

Stated Security Concerns
§ Areas of concerns
§ Operating system security, rogue applications, linked

libraries, device drivers
§ Sniffing communication lines to cryptographic device

§ Possible compromises
§ PIN recovery
§ Access to session (insertion, modification or deletion of

commands)
§ Impersonation of token/device

§ Solutions
§ Code signing

The Security Claim

“We note that none of the attacks just
described can compromise keys marked

sensitive, since a key that is sensitive will
always remain sensitive. Similarly, a key

that is unextractable cannot be modified to
be extractable.”

C_WrapKey
C_WrapKey wraps (i.e., encrypts) a private or

secret key and can be used in the following
situations:

· To wrap any secret key with an RSA public key.
· To wrap any secret key with any other secret key.
· To wrap an RSA, Diffie-Hellman, or DSA private

key with any secret key.

C_WrapKey Secret Key
Mechanisms

CKM_<NAME>_<MODE>

Some mechanisms:
§ CKM_DES_ECB
§ CKM_DES_CBC
§ CKM_DES_CBC_PAD
§ CKM_DES3_ECB
§ CKM_DES3_CBC
§ CKM_DES3_CBC_PAD

Other ciphers include:
§ RC2, RC4, RC5, CAST, IDEA, etc

C_WrapKey Vulnerabilities

§ Weaker Key
§ Weaker Algorithm
§ Key Conjuring
§ Key Binding
§ Key Separation

Key Conjuring

§ Observations:
§ Optional use of either ECB or CBC mode.
§ Optional use of a MAC.

§ Implications:
§ The unauthorized generation of keys.
§ e.g.

Import a random byte string (R) as the encrypted key
(Trandom) yielding a new key krandom = dMK(Trandom).

Key Binding
§ Observations:
§ Optional use of either ECB or CBC mode.
§ Optional use of a MAC.
§ No restrictions on Keys with repeated halves.

§ Implications
§ Can attack each half of a key(component)

independently.
§ e.g.
§ Export a double length key (any mode).
§ Re-import the first half as a single length key encrypted under

ECB.
§ Re-import the second half as a single length key encrypted

under ECB.
§ Perform key search against each single length individually.

Key Separation

TRUE if key supports unwrappingCKA_UNWRAP

TRUE if key supports wrappingCKA_WRAP

TRUE if key supports verification (i.e., of
authentication codes)

CKA_VERIFY

TRUE if key supports signatures (i.e.,
authentication codes)

CKA_SIGN

TRUE if key supports decryptionCKA_DECRYPT

TRUE if key supports encryptionCKA_ENCRYPT

MeaningAttribute

Key Separation
§ Observation:
§ No enforced separation between Encryption,

Authentication and Key Wrapping Keys.

§ Implications:
§ e.g.
§ Export the target key (k1) under any key (k2 – the key

wrapping key) using the function C_WrapKey.
§ Decrypt the resultant data using C_Decrypt using k2 (the key

wrapping key) as a data decryption key.
§ The data returned is the clear value of the target key (i.e. k1).

What about the claim again?

“We note that none of the attacks just described can
compromise keys marked “sensitive,” since a key

that is sensitive will always remain sensitive.
Similarly, a key that is unextractable cannot be

modified to be extractable.”
§ Previous attacks require a key to be extractable.
§ This property cannot be disabled (and once set

cannot be cleared).
§ What about other attacks?

C_DeriveKey Mechanisms

1. CKM_CONCATENATE_BASE_AND_KEY
§ derives a secret key from the concatenation of two

existing secret keys

2. CKM_CONCATENATE_BASE_AND_DATA
§ derives a secret key by concatenating data onto the end

of a specified secret key.

3. CKM_CONCATENATE_DATA_AND_BASE
§ derives a secret key by prepending data to the start of a

specified secret key.

C_DeriveKey Mechanisms

4. CKM_XOR_BASE_AND_DATA
§ is a mechanism which provides the capability

of deriving a secret key by performing a bit
XORing of a key pointed to by a base key
handle and some data.

5. CKM_EXTRACT_KEY_FROM_KEY
§ provides the capability of creating one secret

key from the bits of another secret key.

C_DeriveKey Vulnerabilities

§ Reduced Key Space
§ Parallel Key Search using Related Keys
§ Related Keys Attack
§ Combined (Parallel Related Key Attack)

Reduced Key Space
§ Observation:
§ Using the CKM_EXTRACT_KEY_FROM_KEY

mechanism, one can extract a subset of the bits from a
given key to create a shorter key.

§ Implications:
§ Reduces the key space needed to be searched.
§ e.g.
§ Extract 40 bits from a DES key to create a 40 bit RC2 key.
§ Exhaustively search the 40 bit RC2 key.
§ May actually less due to parity bits in the DES key

§ Exhaustively search for the remaining 24 bits (less 3 parity
bits).

Parallel Key Search

§ Observation:
§ CKM_XOR_BASE_AND_DATA gives us an

easy way to xor known patterns onto a key.
§ Reduce key space we need to search by

generating a large number of related keys (with
known differences).

§ Implications:
§ Single length DES keys can be easily found.

Parallel Key Search

k 1

k 1
k 2

k 2

k 8 k 1

k 4

k 7

k 5

k 6

k 3

S e a r c h i n g f o r 1 K e y

A v e r a g e F r a c t i o n o f K e y S p a c e t o
S e a r c h : 1 / 2

A v e r a g e F r a c t i o n o f K e y S p a c e t o S e a r c h : 1 / 4

A v e r a g e F r a c t i o n o f K e y S p a c e t o S e a r c h : 1 / 1 6

S e a r c h i n g f o r t h e f i r s t o f 2 K e y s

S e a r c h i n g f o r t h e f i r s t o f 8 K e y s

Parallel Key Search (cont.)

§ e.g.
§ Generate 2^16 related keys of original target key.
§ Using each key, encrypt a known pattern and store result in

searchable database.
§ Search for a key by iteratively performing trial encryptions of

the known pattern and compare result to entries in database.
§ After 2^39 we expect to find a match (i.e. we find a key which

produces an encrypted output in the database).
Since we know how that key is related to all the others, we known all

the 2^16 keys including the original one.

§ What went wrong?
§ Being able to modify a key is dangerous.
§ Lack of appreciation of implications.

Related Keys Attack

§ Observation:
§ Using CKM_XOR_BASE_AND_DATA can create

related keys.
§ Implications:
§ Reduces 3-key 3DES to only slight stronger than single

DES (2^168 to 2^56).
§ Works by isolating the key components and searching

for them independently.
§ 2-key 3DES can similarly be attacked by first

‘converting them into 3-key 3DES keys (using
CKM_CONCATENATE_BASE_AND_DATA).

Related Keys Attack Explained

§ The 3DES Attack
§ Start with related keys
§ K1 = <k1, k2, k3>
§ K2 = <k1 ⊕ ∆, k2, k3>
So K1 and K2 are the same except for some small difference ∆.

§ Encrypt plaintext (P) under K1 to get cipher text (C)
§ C = eK1(P) = eK1(dk2(eK3(P)))

§ Decrypt ciphertext (C) under K2 to get new ‘plaintext’
(P’)
§ P’ = eK2(C) = dK1 ⊕∆(ek2 (dK3(C)))

Related Keys Attack (cont.)

§ Putting the equations,
§ C = eK1(P) = eK3(dk2(eK1(P)))
§ P’ = eK2(C) = dK1 ⊕∆(ek2 (dK3(C)))

§ Together we get
§ P’ = dK1 ⊕∆(ek2 (dK3(eK3(dk2(eK1(P))))))

§ and cancelling
§ P’ = dK1 ⊕∆(eK1(P))

§ Note the only key component present in the equation is
k1 (k2, k3 are not present).
§ Hence you can search for k1 in isolation.

Parallel Related Keys Attack

§ Observation:
§ Can combine the ideas of a parallel key search

and the 3DES related key attack.

§ Implications:
§ 3DES keys become practically vulnerable.
§ E.g. Clayton- Bond key search machine.

Back to the claim…
Both the Parallel Key Search attack and the
Related Key attack contradict the claims of the

API designers!
§ Implication:
§ Any user with read/write access to token objects can

recover an key.
§ Hence must trust all users with such ability.
§ Must prevent unauthorized access to all sessions with

read/write access to token objects.
§ What about a session with only read only access to

token objects?

Wrapping/Unwrapping of Private
Keys using Secret Keys

§ Once a private key has been BER-encoded
as a PrivateKeyInfo type, the resulting
string of bytes is encrypted with the secret
key. This encryption must be done in CBC
mode with PKCS padding. Unwrapping a
wrapped private key undoes the above
procedure.

Private Key Modification

§ Observation:
§ Possible to modify two blocks in the clear key

token by modifying.
§ Create error -> lead to fault analysis attacks.

§ Implications:
§ Possible to perform various attacks that lead to

recovery of the original private key.
§ E.g. Create error in CRT exponent thereby

enabling Lenstra’s attack.

Private Key Modification (cont.)

§ Solutions
§ Encrypted private keys must have strong

cryptographic method to ensure integrity of key
(e.g. MAC, hash or signature).
§ Confirm integrity of key using mathematical

properties.

Public Key Based Key Exchange

§ Two mechaisms for wrapping keys
§ CKM_RSA_PKCS (PKCS #1 RSA)
§ CKM_RSA_X_509 (X.509 (Raw) RSA)
§ “…encrypts a byte string by converting it to an

integer, most-significant byte first, applying “raw”
RSA exponentiation, and converting the result to a
byte string, mostsignificant byte first.”
§ Encrypted Token T = ke mod n where e is public

exponent, k the key being exported and n the
modulus).

Small Public Exponent

§ The clear key is right justified in the field
provided, and the field padded to the left with
zeroes up to the size of the RSA encryption block
(e.g. for key k=k1k2…k128 the padded message
m=0102…0l-128 k1k2…k128, where l is the length of
the modulus). The resultant field is encrypted
yielding y = me mod n.
§ If then me < n (i.e.,e < log2n/128) then y = me.

Thus m = log2(y)/e and so for we can easily
recover m and hence k.

More comments

§ Due to the speed implications of an exponent with
low Hamming weight, it is common for public
keys to have exponents of 3 and 216+1. There is
often an option when generating a public key.
§ This is also achievable if it is possible to modify

the public exponent or if a public key with a
suitable exponent exists on a system.
§ For PKCS #11 this is a moot point since one can

‘conjure’ a public key with public exponent 3.

Trojan Public Key

§ Aim: To export an unknown secret key (the target)
under a known key
§ Attacker calculates a key pair (e,n), (d,n) for which d is

known.
§ Supplies (e,n) to key wrap call requesting a given

unkown secret key k be wrapped.
§ y = ke mod n is returned
§ Attacker uses knowledge of d to calculate yd mod n = k.

§ Solutions
§ A public key needs to be authenticated before use.

Trojan Wrapped Key

§ Aim: To establish a known key in the system.
§ Attacker selects a key k.
§ Attacker calculates y = ke mod n for the known public

key (e, n).
§ Supplies y to key unwrap call under the unknown

private key (d,n).
§ The known key k is extracted and is available to the

attacker in the system.

§ Solution:
§ The authentication of wrapped keys before import.

Conclusions

§ Multiple vulnerabilities in the standard do
exist.
§ Most are widely known.
§ Changes are required to the standard (work

in progress).
§ Documentation.
§ A low rate of knowledge transfer?

